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Abstract

In this paper, we propose new Euler flux functions for use in a finite-volume Euler/Navier–Stokes code, which are very
simple, carbuncle-free, yet have an excellent boundary-layer-resolving capability, by combining two different Riemann
solvers into one based on a rotated Riemann solver approach. We show that very economical Euler flux functions can
be devised by combining the Roe solver (a full-wave solver) and the Rusanov/HLL solver (a fewer-wave solver), based
on a rotated Riemann solver approach: a fewer-wave solver automatically applied in the direction normal to shocks to
suppress carbuncles and a full-wave solver applied, again automatically, across shear layers to avoid an excessive amount
of dissipation. The resulting flux functions can be implemented in a very simple and economical manner, in the form of the
Roe solver with modified wave speeds, so that converting an existing Roe flux code into the new fluxes is an extremely
simple task. They require only 7–14% extra CPU time and no problem-dependent tuning parameters. These new rotated
fluxes are not only robust for shock-capturing, but also accurate for resolving shear layers. This is demonstrated by an
extensive series of numerical experiments with standard finite-volume Euler and Navier–Stokes codes, including various
shock instability problems and also an unstructured grid case.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we propose new flux functions for use in a finite-volume Euler/Navier–Stokes code, which are
very simple, carbuncle-free, yet have an excellent boundary-layer-resolving capability, by combining two dif-
ferent Riemann solvers into one based on a rotated Riemann solver approach.
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Despite a great deal of progress made in the past decades, current finite-volume Euler codes have a hard
time suppressing unacceptable flow fields, often referred to as the carbuncle, e.g., a distorted bow shock as
if a thin plate were inserted at the center perpendicular to the shock [1,2]. This happens, unfortunately, with
accurate (less dissipative) flux functions such as Roe’s approximate Riemann solver [3], which recognizes all
wave components in the Riemann problem and introduces minimal dissipation to better resolve discontinuities
[4]. Several attempts have been made to understand and cure the phenomenon [4–10], but, although they offer
several useful explanations and guides to prevent it, none of them have appeared to reach yet the complete
understanding and the cure of the problem [11]. There is, however, a class of flux functions that is known
to be ‘carbuncle-free’ (if not perfectly carbuncle-free). This includes the Rusanov solver and the simplest ver-
sion of the HLL Riemann solvers [12,13]. These are approximate Riemann solvers with one-wave and two-
wave approximations respectively. These flux functions are very robust for inviscid calculations involving
shocks, but unacceptably dissipative for shear layers, particularly for boundary layer calculations with a
Navier–Stokes code.

Here, we propose a method to combine these carbuncle-free flux functions and the Roe flux function, such
that shear layers are better resolved while the robustness of the dissipative fluxes is retained for shock-captur-
ing, in a very simple but a systematic manner. To combine two flux functions, we use the rotated Riemann
solver approach [14–16], which adaptively selects a direction suitable for upwinding and applies a Riemann
solver along that direction, in order to capture multidimensional flow features as accurately as possible by
one-dimensional physics. Originally, this approach was proposed to better resolve shocks and shear layers
[14,15], but in [15] it was concluded that the gain was not very impressive in second-order accurate computa-
tions. Later, Ren [16] took this approach, not to improve accuracy, but to gain robustness for shock-captur-
ing. He decomposed a cell-face normal into two directions: one aligned with the velocity difference vector
(normal to shocks and parallel to shears) and the other orthogonal to it, and then applied the Roe solver along
them. This rotated flux was shown to suppress the carbuncle by an extra dissipation introduced by the rotated
flux mechanism. This, of course, does not come free; an additional cost has to be paid. He claims that the fac-
tor of CPU time is not 2 but can be made 1.5 if smartly implemented.

We follow Ren’s work, but there are significant differences. One is that we apply two different Riemann solv-
ers in the two directions. We do not rely on the additional dissipation introduced by the rotation mechanism
itself, but rather apply a carbuncle-free flux function directly to the velocity difference vector direction. In the
other direction, we employ the Roe solver to prevent the resulting flux from being too dissipative. This means
that the combined flux becomes the carbuncle-free flux normal to shocks and the less dissipative Roe flux across
shear layers. Therefore, the resulting flux has what it takes to be carbuncle-free as well as boundary-layer-
resolving. Moreover, we will show that the resulting fluxes can be implemented as simple and economical as
the Roe flux with an entropy fix, and they require only about 7–14% more CPU time than the Roe flux (a factor
of 1.07–1.14) including the cost of computing the velocity difference vector. Another difference lies in the def-
inition of the decomposed normal directions. It has been customary to use a cell-face normal when the velocity
difference vector is too small [16]. Here, we propose to take a cell-tangent instead of normal. This does not make
any differences for Ren’s rotated solver (because the same flux is used in both directions), but does bring a sig-
nificant impact on our rotated solvers. With this modified definition, the Roe flux will be activated instead of
more dissipative solvers, for smoothly varying flows, thus leading to accuracy improvement.

The idea of hybridizing the Roe flux and the HLL flux is not new. This has already been considered by
Quirk [2] to cure the carbuncle. He used a pressure gradient to detect a shock, and then switch the flux from
the Roe to the HLL to avoid the carbuncle. Although very effective, the resulting algorithm does not seem to
have gained popularity, apparently because of its empirical nature in the shock-sensor and also the discontin-
uous switching between two different fluxes. Another hybridization was proposed later by Janhunen [17] for
magneto-hydrodynamics simulations, based on a positivity check on the density and the pressure. Yet, there
are still other fluxes that may be considered as a combination of these two fluxes, [8,18], for example. In this
paper, we construct hybrid fluxes by using the rotated Riemann solver approach, which are as simple, econom-
ical and predigested as a single Riemann solver, and do not require any problem-dependent tuning
parameters.

The paper is organized as follows. In the next section, a finite-volume formulation of the Euler equations is
given. In Section 3, base Riemann solvers are described, which will be combined later to construct new Riemann
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solvers. In Section 4, a general formulation of rotated Riemann solver is given. Then, in Section 5, we construct
new flux functions by combining two different flux functions into one by the rotated Riemann solver approach,
and show how they can be simplified to be comparable to the Roe solver with an entropy fix. In Section 6, the
choice of the rotated direction is discussed. In Section 7, we present a series of numerical experiments in order to
demonstrate the excellent performance of the new rotated-hybrid flux functions. Finally, the paper ends with
concluding remarks.

2. Finite-volume discretization

Consider the Euler equations in two dimensions,
oU

ot
þ oF

ox
þ oG

oy
¼ 0; ð2:1Þ

U ¼

q

qu

qv

qE

26664
37775; F ¼

qu

qu2 þ p

quv

quH

26664
37775; G ¼

qv

quv

qv2 þ p

qvH

26664
37775; ð2:2Þ
where q is the density, u and v are the velocity components in the x and y directions, respectively, and p is the
static pressure. The specific total energy and enthalpy are given by
E ¼ 1

c� 1

p
q
þ 1

2
ðu2 þ v2Þ; ð2:3Þ

H ¼ c
c� 1

p
q
þ 1

2
ðu2 þ v2Þ; ð2:4Þ
where c ¼ 1:4. The speed of sound, denoted by c, is given by c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
. We consider discretizing the system

with a cell-centered finite-volume algorithm over a domain dissected into a set {I} of quadrilateral or/and tri-
angular cells. For each cell i 2 fIg, having a set of faces fKig, the cell-residual Resi is defined as a numerical
approximation of the integral over the cell of the spatial operator divided by the cell area Si. With the mid-
point rule which is sufficiently accurate for second-order accuracy, it can be written as
Resi ¼ �
X

k2fKig
UkðnkÞDsk=Si; ð2:5Þ
where Dsk is the length of cell face k 2 fKig, nk is the unit vector outward normal to that face, and UkðnkÞ is the
numerical flux, which is a numerical approximation to Hnk ¼ ½F;G� � nk. The cell-averaged value, Ui, is then
evolved by the non-zero residual in the form
dUi

dt
¼ Resi; ð2:6Þ
which we integrate in time by the two-stage second-order Runge–Kutta method of Shu and Osher [19],
U
ð0Þ
i ¼ Un

i ;

U
ð1Þ
i ¼ U

ð0Þ
i þ DtResiðUð0Þi Þ;

U
ð2Þ
i ¼

1

2
U
ð0Þ
i þ

1

2
ðUð1Þi þ DtResiðUð1Þi ÞÞ;

Unþ1
i ¼ U

ð2Þ
i ; ð2:7Þ
with the time step Dt restricted by
Dt ¼ min
i2fIg

2SiP
k2fKigjkkjmaxDsk

 !
CFL; ð2:8Þ
where jkkjmax is the maximum characteristic wave speed normal to the cell face k.
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The numerical flux, Uk, is evaluated by using the left and right states across the interface. If we take simply the
cell-averaged values as the left and right states, the method will be first-order accurate in space. To achieve sec-
ond-order accuracy (on structured grids), we employ Van Leer’s j-schemes [20], which upgrades the cell-aver-
aged values to a piecewise linear/quadratic polynomial over the cell, resulting the following interface values:
UL
iþ1=2 ¼ Ui þ

s
4
½ð1� jsÞD�i Uð1þ jsÞDþi U�; ð2:9Þ

UR
iþ1=2 ¼ Uiþ1 �

s
4
½ð1þ jsÞD�iþ1Uþ ð1� jsÞDþiþ1U�; ð2:10Þ
where iþ 1=2 indicates the interface of the cells i and iþ 1, and
s ¼ aveðD�i U;Dþi UÞ; D�i U ¼ Ui �Ui�1; Dþi U ¼ Uiþ1 �Ui: ð2:11Þ

We choose j ¼ 1=3 to achieve a quadratic reconstruction for smooth solutions. The resulting scheme is, how-
ever, only second-order accurate (although a smaller error is expected) due to the use of the midpoint rule to
evaluate the flux integral (2.5), instead of a two-point third-order Gaussian quadrature. The averaging func-
tion is chosen as the Van Albada limiter [21],
aveða; bÞ ¼ 2ðabþ �aÞ
a2 þ b2 þ 2�a

; �a ¼ 10�6; ð2:12Þ
to prevent oscillations.

3. Base Riemann solvers

A numerical flux across each interface k, Uk, may be determined by solving exactly or approximately a Rie-
mann problem based on the one-dimensional Euler equation in the direction of the face normal nk,
oU

ot
þ oHnk

onk
¼ 0; ð3:1Þ
with the initial data, UL and UR separated by the cell interface. These initial data are simply taken as the cell-
averaged states in the adjacent cells (first-order accurate) or taken from linearly extrapolated states (second-
order accurate). In what follows, we omit the subscript k for clarity.

One of the Riemann solvers we employ in this study is Roe’s approximate Riemann solver [3]. This is based
on the Roe-averaged state bU that satisfies the following:
DHn ¼ bAnDU; ð3:2Þ

where DHn ¼ HnðURÞ �HnðULÞ, DU ¼ UR �UL, and bAn ¼ oHn=oU evaluated by the Roe-averaged
quantities,
q̂ ¼ ffiffiffiffiffiffiffiffiffiffiffi
qLqR

p
; ð3:3Þ
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ffiffiffiffiffi
qL

p þ uR
ffiffiffiffiffiffi
qR

pffiffiffiffiffi
qL

p þ ffiffiffiffiffiffi
qR

p ; ð3:4Þ
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ffiffiffiffiffi
qL

p þ vR
ffiffiffiffiffiffi
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pffiffiffiffiffi
qL

p þ ffiffiffiffiffiffi
qR

p ; ð3:5Þ

bH ¼ H L
ffiffiffiffiffi
qL

p þ HR
ffiffiffiffiffiffi
qR

pffiffiffiffiffi
qL

p þ ffiffiffiffiffiffi
qR

p ; ð3:6Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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: ð3:7Þ
The interface flux is then given by
URoe ¼
1

2
½HnðULÞ þHnðURÞ� �

1

2
bRnjbKnjbLnDU; ð3:8Þ
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where bRn is the right eigenvector matrix of bAn,
bRn ¼

1 1 1 0

û� ĉnx û ûþ ĉnx �ny

v̂� ĉny v̂ v̂þ ĉny nxbH � q̂nĉ 1
2
ðû2 þ v̂2Þ bH þ q̂nĉ q̂t

266664
377775; ð3:9Þ
with bLn ¼ bR�1
n , and jbKnj is a diagonal matrix defined by
jbKnj ¼ diagðjk̂1
nj; jk̂2

nj; jk̂3
nj; jk̂4

njÞ ¼ diagðjq̂n � ĉj; jq̂nj; jq̂n þ ĉj; jq̂njÞ; ð3:10Þ

with n = (nx, ny), q̂n ¼ ðû; v̂Þ � n and q̂t ¼ ðû; v̂Þ � ð�ny ; nxÞ. This is often written in the following form:
URoe ¼
1

2
½HnðULÞ þHnðURÞ� �

1

2

X4

k¼1

jk̂k
njŵk

nr̂k
n; ð3:11Þ
where r̂k
n is the k-th column of bRn, and ŵk

n ¼ ðbLnDUÞk, i.e.,
ŵ1
n ¼ ðDp � q̂ĉDqnÞ=ð2ĉ2Þ; ð3:12Þ

ŵ2
n ¼ Dq� Dp=ĉ2; ð3:13Þ

ŵ3
n ¼ ðDp þ q̂ĉDqnÞ=ð2ĉ2Þ; ð3:14Þ

ŵ4
n ¼ q̂Dq̂t: ð3:15Þ
It is well-known that this flux admits non-physical expansion shocks. This can be avoided, for example, by
modifying the modulus of the eigenvalue [22], for the nonlinear fields k ¼ 1; 3 as follows:
jk̂k
nj
� ¼

jk̂k
nj; if jk̂k

njP d;
1
2d ðjk̂k

nj
2 þ d2Þ; if jk̂k

nj < d;

(
ð3:16Þ
where d ¼ 0:2. This flux function takes into account all waves in the system, and introduces a ‘right’ amount of
dissipation, resulting in an excellent discontinuity-capturing property including shear waves. However, it is
prone to the nonlinear instability, i.e. the carbuncle.

Another Riemann solver is the HLL Riemann solver, which refers to the simpler of the two approximate
Riemann solvers proposed in [13]. This is a two-wave approximation to the exact Riemann solver (the other is
a three-wave approximation), and it is given by
UHLL ¼
SþRHnðULÞ � S�L HnðURÞ

SþR � S�L
þ SþRS�L

SþR � S�L
DU; ð3:17Þ
where
SþR ¼ maxð0; SRÞ; S�L ¼ minð0; SLÞ: ð3:18Þ

The left and right wave speeds, SL and SR, are set to be the minimal and maximal eigenvalues of the Jacobian
matrix bAn, as proposed by Einfeldt [23],
SL ¼ minððqnÞL � cL; q̂n � ĉÞ; SR ¼ maxððqnÞR þ cR; q̂n þ ĉÞ; ð3:19Þ

where with ðqnÞL;R ¼ ðu; vÞL;R � n. With this choice, the HLL flux becomes identical to the Roe flux across an
isolated shock discontinuity [23]. The resulting flux is sometimes called the HLLE flux.

The HLL flux can be written also as
UHLL ¼
1

2
½HnðULÞ þHnðURÞ� þ

SþRS�L
SþR � S�L

DU� 1

2

SþR þ S�L
SþR � S�L

DHn; ð3:20Þ
where
DHn ¼ HnðURÞ �HnðULÞ: ð3:21Þ
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This flux difference can be decomposed by the Roe linearization, so that the dissipation terms merge into a
single form similar to that of the Roe flux as will be shown later. Then, it can be shown that the choice of the
wave speeds (3.19) results in a stable scheme, ensuring the positivity of the dissipation matrix (see [23]). This
flux function is known to be carbuncle-free [4], but more dissipative than the Roe flux, particularly for shear
layers.

We consider also the Rusanov solver [12]. This is a one-wave approximate Riemann solver, which can be
derived from either of the two solvers described above, by reducing the number of waves. To derive from the
Roe flux, simply replace the eigenvalue matrix jbKnj by a single scalar bSn defined as the spectral radius of bAn,
bSn ¼ qðbAnÞ ¼ maxðjûn þ ĉj; jûn � ĉjÞ ¼ jûnj þ ĉ: ð3:22Þ
That is to say, we set
jbKnj ¼ bS nI; ð3:23Þ

where I is the identity matrix, and we obtain, from (3.8),
URusanov ¼
1

2
½HnðULÞ þHnðURÞ� �

1

2
bRnðbS nIÞbLnDU ð3:24Þ

¼ 1

2
½HnðULÞ þHnðURÞ� �

bS n

2
DU: ð3:25Þ
This is the Rusanov flux (also sometimes called the Lax–Friedrichs flux or the local Lax–Friedrichs flux,
depending on the definition of bSn). The resulting scheme is stable in the sense that the coefficient in the dis-
sipation term, i.e., bS n is positive. Note that this is even more dissipative than the HLL and Roe fluxes
(although equivalent to the Roe and HLL fluxes in the case of an isolated shock associated with the speed
jk̂3

nj), but this is also known as robust as the HLL flux, i.e., ‘carbuncle-free’.

4. General form of rotated Riemann solvers

In the standard finite-volume approach, no matter how we solve the Riemann problem, the direction for the
one-dimensional problem is completely fixed by the mesh geometry. Obviously, this grid-aligned normal may
not always be appropriate for upwinding. Then, methods of rotated Riemann solvers have been proposed in
order to choose freely the direction of the one-dimensional Riemann problem for an improved accuracy (see
[15] and references therein). Although these methods were originally introduced to improve accuracy for
shock-capturing, our purpose is mainly to gain robustness rather than better accuracy, in the same spirit as
in [16]. Better accuracy can also be obtained in our approach, by a smart choice of the direction (see Section
6). In the following, we describe a prototype of rotated Riemann solvers, which we will see later can be dra-
matically simplified by combining two different fluxes.

Rotated Riemann solvers are based on the decomposition of the normal vector n into two orthogonal direc-
tions. Suppose we have selected n1 (the choice will be discussed in Section 6). Then, we align the other direction
n2 as perpendicular to n1, i.e.,
n1 � n2 ¼ 0; ð4:1Þ

where we assume also that jn1j ¼ jn2j ¼ 1. The cell-face normal n is now projected onto these orthogonal
directions,
n ¼ a1n1 þ a2n2; ð4:2Þ

where a1 ¼ n � n1, a2 ¼ n � n2. In doing this, we choose the vectors n1 and n2 such that a1 P 0 and a2 P 0, so
that we keep the same left and right states in both directions (see Fig. 1). The interface flux is then decomposed
as
U ¼ UðnÞ ¼ a1Uðn1Þ þ a2Uðn2Þ: ð4:3Þ

To define the interface flux, we need to choose numerical fluxes in two directions, Uðn1Þ and Uðn2Þ. These
can be determined by solving two Riemann problems: one in the direction of n1 and the other in the
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direction of n2. For example, if we use the Roe solver for both directions, we obtain the rotated Riemann
solver of Ren [16]
URen ¼
1

2
½HnðULÞ þHnðURÞ� �

1

2

X
m¼1;2

am
bRnm jbKnm j

�bLnmDU; ð4:4Þ
where jbKnm j
� is the diagonal matrix of the modified eigenvalues (3.16). Observe that compared with the original

formula only the dissipation term is different. Its property depends on the choice of the direction n1. For exam-
ple, Ren [16] showed by taking n1 as a velocity difference vector that this flux function introduces more dis-
sipation in the linear field and prevents carbuncles effectively. Obviously this is more expensive than the
original one, but the cost can be minimized, for example by sharing the averaged state and the eigenvector
of the entropy wave in the two directions. Ren [16] claims that the cost can be made 1.5 times the original
Roe flux. In this paper, we construct rotated flux functions based on the same rotated Riemann solver ap-
proach whose cost is nearly the same as the Roe flux.

5. Rotated-hybrid Riemann solvers

We now construct new flux functions by combining the Roe flux and the fewer-wave solvers, by applying
them in the two normal directions in the framework of the rotated Riemann solvers.

Firstly, we consider employing the Roe flux function (3.8) in n2 and the Rusanov flux (3.24) in n1. This gives
URR ¼ a1URusanovðn1Þ þ a2URoeðn2Þ ð5:1Þ

¼ 1

2
½HnðULÞ þHnðURÞ� �

a2

2
bRn2
jbKn2
j�bLn2

DU� a1

2
bRn1
ðbS n1

IÞbLn1
DU: ð5:2Þ
Since bRn1
IbLn1

¼ I ¼ bRn2
IbLn2

, this can be combined into the following:
URR ¼
1

2
½HnðULÞ þHnðURÞ� �

1

2
bRn2
ða2jbKn2

j� þ a1
bS n1

IÞbLn2
DU; ð5:3Þ
which we write as
URR ¼
1

2
½HnðULÞ þHnðURÞ� �

1

2

X4

k¼1

ĵsk
RRjŵk

n2
r̂k

n2
; ð5:4Þ
where
ĵsk
RRj ¼ a2jk̂k

n2
j� þ a1

bS n1
: ð5:5Þ
Since a1, a2 and bS n1
are all non-negative, this scheme is stable. Note that this flux is in the form of the Roe flux

with modified wave speeds (compare this with (3.11)). In particular, the eigenvectors and the wave strengths
are needed to be computed for n2 only. The vector n1 is needed only to compute the wave speed bSn1

. Hence,
the cost is comparable to the Roe flux with an entropy fix incorporated in the wave speeds. We will refer to this
flux as the Rotated-Roe–Rusanov (Rotated-RR) flux.

Secondly, we consider employing the HLL flux instead of the Rusanov. This will improve the shock-cap-
turing capability in the direction of n1 as the HLL solver can capture isolated shock discontinuities. Applying
the Roe flux function (3.8) in n2 and the HLL flux (3.20) in n1, we get
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URHLL ¼ a1UHLLðn1Þ þ a2URoeðn2Þ ð5:6Þ

¼ 1

2
½HnðULÞ þHnðURÞ� �

a2

2
bRn2
jbKn2
j�bLn2

DUþ a1

SþRS�L
SþR � S�L

DU� a1

2

SþR þ S�L
SþR � S�L

DHn1
; ð5:7Þ
where SþR and S�L are to be computed with n1. This is again stable since each dissipation matrix has positive
eigenvalues, as described in Section 3. To further simplify this, we use the identity,
DHn ¼ a1DHn1
þ a2DHn2

; ð5:8Þ

which is rewritten (by the Roe linearization [3], i.e., DHn2

¼ bAn2
DU ¼ bRn2

bKn2
bLn2

DU) as
a1DHn1
¼ DHn � a2

bRn2
bKn2
bLn2

DU; ð5:9Þ

to replace the last term in (5.7), resulting
URHLL ¼
SþRHnðULÞ � S�L HnðURÞ

SþR � S�L
� 1

2
bRn2

a2jbKn2
j� � a2

SþR þ S�L
SþR � S�L

bKn2
� 2a1

SþRS�L
SþR � S�L

� �bLn2
DU: ð5:10Þ
We thus arrive at the following very simple formula:
URHLL ¼
SþRHnðULÞ � S�L HnðURÞ

SþR � S�L
� 1

2

X4

k¼1

ĵsk
RHLLjŵk

n2
r̂k

n2
; ð5:11Þ
where
ĵsk
RHLLj ¼ a2jk̂k

n2
j� � 1

SþR � S�L
½a2ðSþR þ S�L Þk̂k

n2
þ 2a1SþRS�L �: ð5:12Þ
Comparing this with the HLL flux in (3.17), we observe that this is as if a matrix dissipation has been intro-
duced into the HLL flux. This implies a better resolution than the HLL flux itself can provide. We find it inter-
esting that a flux proposed in [8], called RoeM2, has a very similar structure, i.e., the HLL with a detailed
dissipation term, although the mechanism of the dissipation seems very different. Alternatively, this rotated
flux may be viewed as a Roe-type flux with modified wave speeds and the arithmetic average of the physical
flux replaced by the wave-speed average. Again, the cost is expected to be comparable to the Roe flux with
modified wave speeds. We will refer to this flux as the Rotated-Roe-HLL (Rotated-RHLL) flux.

We point out that it is extremely simple to convert an existing Roe flux code into these rotated-hybrid
fluxes. After computing as usual the left and right physical fluxes, HnðULÞ and HnðURÞ, we simply redefine
the interface normal as n2, and compute the dissipation term exactly as in the Roe flux with modified wave
speeds (5.5) or (5.12).

6. Choice of n1

To completely define our rotated-hybrid fluxes, the normal direction n1 must be determined at every inter-
face. We assume always that n2 is taken as an orthogonal direction with a2 P 0. In this work, as in the pre-
vious works [15,16], we consider aligning n1 with the velocity difference vector taken over two adjacent cells,
n1 ¼
D~q
kD~qk ; if kD~qk > �;

n; otherwise;

8<: ð6:1Þ
where D~q ¼ ðDu;DvÞ ¼ ðuR � uL; vR � vLÞ, kD~qk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDuÞ2 þ ðDvÞ2

q
and � is a small number. This choice is

known to select the direction normal to a shock or parallel to a shear if they exist [15].
In the case of a shock, this means that our rotated Riemann solvers become the Rusanov/HLL Riemann

solver in the direction normal to the shock, and the Roe flux in the parallel direction (see Fig. 2). It may be
argued that the nonlinear instability is caused by a transverse perturbation and therefore a dissipative flux
should be applied parallel to the shock [6]. In fact, the rotated fluxes designed this way do it automatically:
for a cell-face perpendicular to a shock, any significant transverse disturbance will orient n1 toward the face
normal (creating non-zero a1), and thus the Rusanov/HLL solver is applied parallel to the shock by a factor of



Fig. 2. Selected normals for a grid-aligned shock wave, by (6.2).
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a1. Note that our rotated Riemann solvers are always more dissipative than the Roe flux whenever there exists
a significant amount of velocity difference in the direction normal to the cell-face (so that a1 6¼ 0) because they
introduce the Rusanov/HLL solver in that direction. On the other hand, it may also be argued that the trans-
verse perturbation is caused by a perturbation normal to the shock, implying that a dissipative flux normal to
the shock will prevent the nonlinear instability in its early stage, as analyzed in [24]. In this viewpoint, our
rotated fluxes will eliminate the nonlinear instability by applying the Rusanov/HLL flux directly normal to
the shock. Either way, numerical experiments indicate that our rotated Riemann solvers completely eliminate
the shock instability for a wide range of problems.

On the other hand, in the case of a shear layer, the rotated fluxes are in general more dissipative than the
Roe flux. However, if the cell interface is aligned with the shear layer, as is often the case with boundary layer
calculations, we will have a1 ¼ 0. This turns off the dissipative fewer-wave solver, and we end up with the stan-
dard grid-aligned Roe flux across the shear layer (see Fig. 3). This will have a great impact on the resolution of
the boundary layer because it is the cross diffusion, rather than the streamwise diffusion, that contaminates the
solution inside the boundary layer. For the face oriented normal to the shear layer, on the other hand, the
rotated flux reduces to a grid-aligned dissipative fewer-wave solver (see Fig. 3). But in this case, the solution
variation is expected to be small compared with the cross-variation, and therefore its effect on the resolution
would be very small. Our numerical experiments confirmed this assertion. It is still wished, nevertheless, that
the rotated flux fully becomes the Roe flux also in the streamwise direction. This may be realized for our
rotated Riemann solvers, by the following modified definition of n1:
n1 ¼
D~q
kD~qk ; if kD~qk > �;

n?; otherwise;

8<: ð6:2Þ
where n? denotes the tangential direction to the geometric face normal. This differs from the previous one in
the alternative direction for a small velocity difference, i.e., the cell-face tangent instead of the normal. It does
Fig. 3. Selected normals for a grid-aligned shear wave.
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not cause any change to the Ren’s rotated Riemann solver because his solver uses the Roe flux in both direc-
tions, but it does bring a significant change into our rotated Riemann solvers. Specifically, this effectively turns
off the dissipative solver (since a1 ¼ n � n1 ¼ n � n? ¼ 0) and recovers the grid-aligned Roe flux for a smoothly
varying streamwise velocity field (Fig. 3). Note that for smooth flows we have
kD~qk ¼ OðhÞ; ð6:3Þ

where h is a mesh size. This means that the more we refine the mesh the more the Roe flux will be used, except
at discontinuities for which the velocity difference remains finite as h! 0. This is even more so for second-
order schemes, in which we use extrapolated values (2.9) and (2.10) to compute the velocity difference vector.
In this case, it is easy to show that
kD~qk ¼ Oðh3Þ ð6:4Þ

for smooth flows. Therefore, it is much more likely in the second-order schemes than in the first-order schemes
that the Roe flux will be used in most places for sufficiently resolved flows and the dissipative flux will be intro-
duced only at discontinuities. In fact, numerical experiments show that the condition kD~qk > � is satisfied only
near discontinuities or strongly varying flow regions, and this is not sensitive to the value of � unless it is excep-
tionally large. This is consistent with Ren’s results [16]. In this work, we set � ¼ 10�12U ref (simply a very small
number), where U ref is a reference velocity magnitude, using the modified definition of n1 (6.2) for all prob-
lems, and demonstrate that our rotated fluxes are fully capable without problem-dependent tuning of �. It
should be noted here that once such an extremely small value is chosen for �, the two choices, (6.1) and
(6.2), would not make a big difference in the results because when kD~qk < � is true, the left and right states
will be almost identical, implying that the choice of flux functions is insignificant.

This choice of normals, as being dependent of the solution, introduces nonlinearity in the algorithm, and
therefore is likely to cause convergence difficulties for steady calculations. To alleviate this, we re-calculate the
normals at every time step only until the residual is reduced by an order of magnitude from the start-up, and
freeze them thereafter. But we may re-calculate them a few times more: once when the residual shows reduc-
tion of two orders of magnitude and also once when it shows three orders of magnitude reduction. This will
better adapt the normals to a converged flow solution. A similar strategy was taken in [15] where the normals
were re-calculated at every 200 iterations.

It should be kept in mind that our rotated-hybrid fluxes do not simply switch between the Roe flux and the
Rusanov/HLL flux. With the definition (6.2), the rotated-hybrid fluxes can be expressed as follows:
UðnÞ ¼
a1URusanov=HLLðn1Þ þ a2URoeðn2Þ; if kD~qk > �;

URoeðnÞ; otherwise:

�
ð6:5Þ
In this form, it is clear that even if the rotated-solver is activated (when kD~qk > �), it introduces the Rusanov/
HLL flux only if a1 6¼ 0 and only by a factor of a1 (61). The flux becomes fully identical to the Rusanov/HLL
flux only if a1 ¼ 1, i.e., the velocity difference vector is perfectly aligned with the cell-face normal (e.g., a grid-
aligned normal shock). This indicates that the rotated-hybrid fluxes are generally much less dissipative than
the Rusanov/HLL fluxes themselves.

A final remark is on the extension of the rotated Riemann solvers to three dimensions. This can be done in a
very straightforward manner as pointed out by Ren [16]. It only amounts to defining n2 as perpendicular to the
principal direction n1 chosen exactly as above. For example, the following formula will do:
n2 ¼
ðn1 � nÞ � n1

kðn1 � nÞ � n1k
: ð6:6Þ
This is applicable to any types of cells, e.g., hexahedra or tetrahedra. Incidentally, our rotated fluxes offer
nothing new for one-dimensional grids. They are inherently multidimensional.

7. Results

We made an extensive series of numerical experiments using the rotated-hybrid Riemann solvers. In the first
subsection, we present results for six shock instability problems, with both first-order and second-order
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schemes, including also an unstructured grid case. A focus is on shock instabilities here. In the second subsec-
tion, we present results for three problems which involve shear layers. Obviously, a focus here is on accuracy
for resolving shear layers.

All computations were performed with double-precision. The rotated-hybrid fluxes, the Rotated-RR and
the Rotated-RHLL, were implemented in the forms (5.4) and (5.11) respectively. We employed the modified
definition of n1 (6.2) with � ¼ 10�12U ref to determine the normals for all test problems. For steady calculations,
we freeze the normals after the density residual experiences an order of magnitude reduction, and re-compute
once each when the residual goes down two and three orders of magnitude. For second-order schemes, we
used extrapolated values (2.9) and (2.10) to compute the velocity difference vector in (6.2).

7.1. Shock instability problems

7.1.1. Quirk’s odd–even grid perturbation problem

This is a well-known test case first studied by Quirk [2], and later by several others [6,16,25]. A single shock
travels from the left to the right at Mach 6, in a domain covered by a 20 � 800 structured grid with unit spac-
ing, involving the following grid perturbations:
yði; jmidÞ ¼
ymid þ 0:001h for i even;

ymid � 0:001h for i odd;

�
ð7:1Þ
where yði; jmidÞ is the y coordinate of a vertex ði; 10Þ, ymid is the y coordinate of the halfway line, and h is the
cell size. This simple flow with such extremely small perturbations is known to cause many upwind flux func-
tions to fail catastrophically (see [6]). Here, we compare our rotated-hybrid fluxes with the Roe flux in the first-
order scheme. Computations were done for 3000 time steps with CFL ¼ 0:4. The shock was set initially at
i ¼ 25. The normals were computed at every time step and never frozen. As shown in Fig. 4, the shock
was destroyed by the Roe flux, and a typical carbuncle was developed. On the other hand, the Rotated-RHLL
flux did not suffer and kept the shock all the way through. The Rotated-RR flux was also found to be free of
instability. The result of the Rotated-RR is almost perfectly identical to that by the Rotated-RHLL, and
therefore not shown.

7.1.2. Steady normal shock instability problem

This is a steady shock test case taken from [11]. A stationary normal shock sits on a 50 � 20 two-dimen-
sional grid with uniform spacings. Unless the shock is located at a mesh interface, there must be at least one
intermediate state. To investigate the effect of the shock position, an initial solution is set up with a varied
intermediate state
qM ¼ dIqL þ ð1� dIÞqR; ð7:2Þ

where qM , qL and qR are the density in the intermediate, left and right states respectively, and
dI ¼ 0:0; 0:1; 0:2; . . . ; 0:9 is a shock position parameter, e.g., dI ¼ 0:0 corresponds to a shock exactly on a mesh
interface. It was reported in [11] that all the fluxes they tested (the Roe flux, the HLL flux, AUSM+ [26],
AUSMþ-up [27], AUSMPW+ [28], RoeM2 [8], and an entropy-consistent flux [10,29]) were not able to keep
a

b

Fig. 4. Odd–even instability: density contours at 2000 time steps. (a) Roe with E-fix and (b) Rotated-RHLL.
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the initial shock for all shock locations, creating a carbuncle or significantly non-uniform solutions in y-
direction.

We specify a uniform state with Mach 6 on the left. Then, all other quantities on the left and right states are
figured automatically as described in [9]. The density in the intermediate cell is given by (7.2), and then all
other intermediate quantities are calculated by the Hugoniot curve connecting the left and right states (see
[5]). The top and bottom boundaries are taken as periodic. At the outflow boundary, the mass flux
qu ¼ 1:0 is specified in the ghost cells for the purpose of preserving the initial shock location, and other quan-
tities are simply copied from the adjacent interior cells. Here again, we compare our rotated-hybrid fluxes with
the Roe flux in the first-order scheme. All calculations were stopped at 40,000 time steps with CFL = 0.5. The
normals were computed at every time step and never frozen. The results for dI ¼ 0:0 and 0.4 are shown in
Fig. 5. The Roe flux failed to preserve the initial shock for all values of dI , resulting a carbuncle. For other
shock locations, the solution developed the same kind of carbuncle and it was quickly washed away out of
the domain through the downstream boundary. For this reason, we do not show other results. On the other
hand, both the Rotated-RR and Rotated-RHLL fluxes reduced the residuals by 6–7 orders of magnitude, and
successfully preserved the initial shock for all shock locations. Results are shown in Fig. 5 for the Rotated-
RHLL flux with dI ¼ 0:0 and 0.4 only. Other results, for other locations as well as by the Rotated-RR, are
similar to these results and therefore omitted.

7.1.3. M1 ¼ 8 flow over a cylinder

We consider M1 ¼ 8 flow over a cylinder. This is yet another test case for which the Roe flux suffers from
the carbuncle. The grid is 160 � 80 structured grid, as shown in Fig. 6 (every other points are displayed for
better visibility). The first-order scheme was used with the rotated-hybrid fluxes and the Roe flux. As expected,
the Roe flux created a distorted solution as shown in Fig. 7(a). On the other hand, our rotated-hybrid fluxes
produced perfectly acceptable solutions shown in Fig. 7(b) and (c). We remark that the solutions are fully con-
verged for all cases (CFL = 0.5): the density residuals dropped to 10�16 (see Fig. 8). For the rotated-hybrid
fluxes, freezing the normal vectors after an order of magnitude reduction of the residuals was essential for
a full convergence. If we continued to re-compute the normals at every time step, the residuals would stagnate
after a few orders of magnitude reduction (although the solutions are very similar to fully converged ones).
a b

c d

Fig. 5. Steady normal shock instability problem: Mach contours. (a) Roe with E-fix: dI ¼ 0:0, (b) Roe with E-fix: dI ¼ 0:4, (c) Rotated-
RHLL: dI ¼ 0:0 and (d) Rotated-RHLL: dI ¼ 0:4.



Fig. 6. Computational grid.

a b c

Fig. 7. M1 ¼ 8 flow over a cylinder: pressure contours. (a) Roe with E-fix, (b) Rotated-RHLL and (c) Rotated-RR.

2572 H. Nishikawa, K. Kitamura / Journal of Computational Physics 227 (2008) 2560–2581
7.1.4. Unstructured grid case: M1 ¼ 20 hypersonic flow over a cylinder

Here, we apply our rotated-hybrid fluxes to a more severe case: M1 ¼ 20 hypersonic flow over a cylinder on
an unstructured triangular grid. We used a first-order cell-centered finite-volume Euler code with the Roe, the
Rotated-RR and the Rotated-RHLL implemented to compute the interface flux across a side of a triangular
element. The grid is a Delaunay triangulation with 11,280 cells and 5881 nodes (160 nodes on the cylinder),
and completely irregular (see Fig. 9: a blow-up of the complete grid). We found that the Roe flux created a
carbuncle as shown in Fig. 10. On the other hand, the Rotated-RHLL flux did not allow the carbuncle to
appear and produced a correct solution (see Fig. 11). We also found, to be somewhat unexpected, that the
Rotated-RR flux created, although weaker, a carbuncle (see Fig. 12). This indicates that although generally
the carbuncle is suppressed by adding an extra dissipation, adding it too much also provokes the carbuncle.
This agrees with results reported in [11]. We remark also that all computations are fully converged (of the
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order of 10�16 after 50,000 to 60,000 time steps), except for the Roe flux where the residuals stagnated after
two orders of magnitude reduction.

7.1.5. Shock diffraction

A shock diffraction problem is another test case for which many Godunov-type fluxes are known to fail
[18]. A Mach 5.09 right-running normal shock diffracts around a 90� corner. We use a square domain, and
locate the corner at the midpoint of the left boundary: the lower half is treated as a wall; the top half is taken
as an inflow. The top boundary is taken as a wall also, and the right and bottom boundaries are taken as out-
flow. The grid is 400 � 400 structured. All computations were performed by second-order schemes with
CFL = 0.95 up to t ¼ 0:18. Results are shown in Fig. 13. It is evident that the Roe flux suffers from a shock
instability. But the rotated-hybrid fluxes do not suffer at all. It is also observed, in this example, that the



Fig. 10. Roe with E-fix.

Fig. 11. Rotated-RHLL.
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Rotated-RR flux results in a somewhat more dissipative solution than that of the Rotated-RHLL flux. It is
notably dissipative near the left wall where a shear layer is developing. But at the same time, we observe that
the shocks are captured by Rotated-RR flux as crisply as those by the HLL flux for second-order schemes



Fig. 12. Rotated-RR.
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(compare these with first-order results 8(b) and (c)). Shown in Fig. 13(d) is a vector plot of a1n1 (on a finer grid
with the face midpoints included as nodes). This is for the Rotated-RHLL flux but essentially the same for the
Rotated-RR flux. It may be hard to see the directions of plotted vectors, but they are not very important (they
are actually well aligned with shock normals; this has already been shown in [16]). Rather, the purpose of this
plot here is to show that the Rusanov/HLL flux has been introduced only in limited regions, i.e., discontinu-
ities and strongly varying flow fields (observe that a1 � 0 in a large part of the domain). This confirms that the
rotated-hybrid fluxes reduce to the Roe flux for smoothly varying flow fields. It also suggests that the quantity
a1n1 could serve as a feature detector for adaptive mesh refinement. Note in particular that it carries informa-
tion about feature directions, e.g., shock normals. This is a valuable piece of information for anisotropic
adaptation.

7.1.6. Double-Mach reflection
It is well known that the Roe flux produces a spurious triple point, also known as the kinked Mach stem, in

the double-Mach reflection problem. This test case was first studied by Woodward and Colella [30], and later
by many others. We use the setup of Quirk [2]: Mach 5.5 right-running normal shock wave hits a 30� ramp.
The grid is 400 � 200 structured grid. Setting the shock at the left boundary at t ¼ 0, we computed a solution
at t ¼ 4 by second-order schemes. All computations were performed with CFL = 0.7. As shown in Fig. 14, the
Roe flux produced the kinked Mach stem, but both the Rotated-RHLL and Rotated-RR fluxes did not suffer
such a failure. Also observed is that the Rotated-RR flux gives a bit more dissipative results (near the wall), as
in the previous test case. Shown in Fig. 14(d) is a vector plot of a1n1. Exactly as in the previous test case, we
observe that the Rusanov/HLL flux has been introduced only near discontinuities and regions of strong var-
iation. Again, we see that the quantity a1n1 captured the flow feature very well, and can be very useful for grid
adaptation.

For this test case, we also made a cost comparison. We calculated an average CPU time per time step for
the three different fluxes. This includes computations of the normals also. The result is that the Rotated-RR
flux and the Rotated-RHLL flux cost respectively 1.07 and 1.14 times more CPU time than the Roe flux. We
remark that the Rotated-RHLL is more expensive simply by the cost of max/min functions used to compute
S�L and SþR.



Fig. 13. Shock diffraction: density contours. (a) Roe with E-fix, (b) Rotated-RR, (c) Rotated-RHLL and (d) Vector Plot of a1n1 (Rotated-
RHLL).
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7.2. Shear layers

7.2.1. Contact discontinuity

In order to demonstrate the shear-resolving capability of the rotated-hybrid fluxes, we conducted a simple
test of a grid-aligned contact discontinuity. In a square domain of 50 � 50 uniform grid
(0 6 x 6 0:05; 0 6 y 6 0:05), we specify q ¼ 10 on the left half and q ¼ 1 on the right half with other quan-
tities uniform throughout the domain. We computed solutions by first-order schemes for 100 times steps
(CFL = 0.65), with the Roe, HLL and Rotated-RHLL fluxes. Solutions are fully converged (density residuals
down to 10�16) with the Roe and Rotated-RHLL fluxes, but not with the HLL. The HLL continued to diffuse
the solution after 100 time steps, and eventually smeared it out completely. A section plot of density is shown
in Fig. 15. As expected, the HLL flux diffuses the contact while the Roe flux preserves it. The Rotated-RHLL
flux, as designed, reduced to the Roe flux for faces aligned with the contact wave, and produced a perfectly
comparable solution to that of the Roe flux. Also, we note that also for faces perpendicular to the contact



Fig. 14. Double Mach reflection: density contours. (a) Roe with E-fix, (b) Rotated-RR, (c) Rotated-RHLL and (d) vector plot of a1n1

(Rotated-RHLL).
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wave, the Rotated-RHLL flux becomes the Roe flux because kD~qk < �. The same results were obtained by the
Rusanov and Rotated-RR fluxes, and therefore not shown.

7.2.2. Supersonic jet
To further demonstrate the shear-resolving ability, we compared the Rotated-RHLL flux with the Roe and

HLL fluxes for a non-aligned shear wave. This is a one-dimensional Riemann problem in a two-dimensional
domain with time-like x-axis. On the left boundary of a square domain, we give, on the top half,
q
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The top, the bottom, and the right boundaries were treated as free-boundary. Computations were made by
first-order schemes on a 200 � 200 grid for 2000 time steps (CFL = 0.5). The Roe flux fully converged (the
density residual down to 10�16), and the HLL and Rotated-RHLL fluxes also converged at a level of 10�12

(7–8 orders of magnitude reduction). Density contours are shown in Fig. 16. Clearly, the Rotated-RHLL flux
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Fig. 15. Grid-aligned contact discontinuity: a section plot of density along y ¼ 0:025 (half line).
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Fig. 16. Supersonic jet: density contours. (a) Roe with E-fix, (b) Rotated-RHLL and (c) HLL.
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has a better shear-resolving capability than the HLL flux, and produces a contact discontinuity as nearly sharp
as that of the Roe flux. This is clearly seen also from the section plot in Fig. 17. Very similar results were ob-
tained by the Rusanov and Rotated-RR fluxes, and therefore not shown.

7.2.3. Flat plate boundary layer

We computed a boundary layer flow over a flat plate (including a leading edge), using a second-order
Navier–Stokes code. The grid is shown partially in Fig. 18; it extends to the right by a factor of 10. Because
the grid is well aligned with the boundary layer, we expect our rotated fluxes reduce to the Roe flux across the
boundary layer. Also, because the solution variation along the flat plate would be very small, they are also
expected to become the Roe flux also along the flat plate. It would be the leading edge region where the dis-
sipative solver might be activated. Overall, we expect to obtain comparable solutions between the rotated
fluxes and the Roe flux.

Computations took 50,000 time steps with CFL = 0.5 for three orders of magnitude reduction in the den-
sity residual for the Roe and HLL fluxes. For the Rotated-RHLL flux, it took 250,000 time steps to achieve
the same level of the residual reduction. This appears partly due to a slow convergence during the re-compu-
tations of the normal directions. Once they were fixed (at 1820 time steps), the residual started to decrease
faster. In this problem also, we found it essential to freeze the normal directions: the residual stagnated
after one order of magnitude reduction if we continued to re-compute the normal directions at every time step.
With the Roe and Rotated fluxes, the residuals went down to the order of 10�8 while with the HLL flux it
reached only up to 10�7. Velocity profiles across the boundary layer are compared in Fig. 19. As expected,
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Fig. 18. Computational grid for flat-plate boundary calculations.
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the Rotated-RHLL flux gives an almost identical result with that of the Roe flux whereas the HLL flux gives
very dissipative and inaccurate solution. Very similar results were obtained by the Rusanov and Rotated-RR
fluxes, and therefore not shown. We also point out that the solution by the Rotated-RHLL flux at 50,000 time
steps is in fact nearly converged, being almost indistinguishable from the one at 250,000 time steps in Fig. 19.

8. Concluding remarks

We have developed very simple rotated-hybrid Riemann solvers, by combining the Roe solver and its sim-
plified versions, i.e., the Rusanov and HLL solvers. The resulting flux functions are not only robust for non-
linear shock instability, but also accurate for resolving shear layers. Furthermore, they are particularly simple
and economical: the same form as the Roe flux with modified wave speeds, so that implementing them into an
existing code (with a Roe-type flux already built in) is an extremely simple task. A cost comparison indicates
that the new flux functions require only 7–14% more CPU time than the Roe flux. They are also directly appli-
cable to both structured and unstructured grids. Although the Rotated-RR flux was found to create a carbun-
cle on an unstructured grid, the Rotated-RHLL flux did not suffer at all and produced perfectly acceptable
solutions for all cases. Moreover, it was shown also that the vector quantity a1n1 was non-zero only at discon-
tinuities and strongly varying flow fields, and therefore it could serve as a directional feature detector for
anisotropic mesh adaptation. Efficiency, robustness and accuracy demonstrated by an extensive series of
numerical experiments indicate that these simple rotated-hybrid Riemann solvers offer a quick and effective
cure to those finite-volume Euler/Navier–Stokes codes that suffer from the carbuncle phenomenon.

Finally, we remark that although this paper focused on particular combinations of flux functions (the Roe,
and the HLL or the Rusanov), other combinations are also possible. For example, we may employ the three-
wave HLL approximate Riemann solver [13] or the HLLC solver [31] instead of the Roe solver, and we still
obtain very simple flux functions. Yet, if we are willing to pay the cost of computing two flux functions per
interface, we can combine any two flux functions in the form of (6.5) to devise a new rotated-hybrid flux that
might work even better. Exploring such other combinations is left as a future work.
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